Управление движением на улицах Москвы

Не нашли то, что искали? Тогда мощные технологии поиска по сайту Вам помогут.
Ключевые слова: , , , , .

Фото: Департамент транспорта г. Москвы

За последние годы в рамках транспортного комплекса Москвы создан ряд ИТ-систем, которые решают различные задачи в этой области, в том числе с использованием Больших Данных.

Статическая транспортная модель, построенная в 2013 году, позволяет прогнозировать ситуацию на долгосрочный период с учетом различных вариантов изменения дорожной обстановки. С ее помощью можно рассчитывать сценарии в масштабах всего города, будь то долгосрочные перекрытия движения или ввод в эксплуатацию новых путепроводов.

Эта модель, помимо прочего, учитывает данные о жителях, предоставляемые нам различными службами: о количестве людей, их возрасте, гендерных признаках, о социальном положении, сколько работающих, сколько неработающих и т. д. Москва разбивается на так называемые транспортные районы, и мы анализируем, куда ездят жители каждого такого района, зачем, в какое время.

Благодаря полученным данным мы анализируем матрицу корреспонденций — совокупность всех «обменов» трафиком между районами. Например, если в районе 600 дошкольников и 500 мест в детских садах, то очевидно, что сотню детей утром повезут в другой район. Для уточнения общей картины происходящего мы проводим опросы, помогающие понять, какой вид транспорта и в каких случаях люди выбирают: когда — личную машину, когда — общественный транспорт. Кроме того, нам нужно спрогнозировать, как на транспортных предпочтениях людей скажутся те или иные изменения в городской планировке или в схеме организации движения, к чему приведет перекрытие дороги в ходе строительства или, наоборот, открытие новой.

Текущую ситуацию мы отслеживаем с помощью динамической транспортной модели, которая дает полное представление о московском трафике в режиме реального времени и позволяет реагировать на возникающие проблемы. Для этого в ДТМ агрегируются данные, полученные с датчиков ГЛОНАСС, установленных на городском транспорте, камер фото- и видеофиксации, транспортных детекторов — радиолокационных датчиков, которые считывает интенсивность движения, скорость автомобилей и ряд других параметров.

ДТМ позволяет управлять светофорами, анализировать проблемные участки, например обнаруживать очаги аварийности, места, где все время возникают заторы; выявлять затруднения в движении пассажирского транспорта и устранять их; производить мониторинг работы мобильных комплексов фото- и видеофиксации (так называемых парконов, фиксирующих правонарушения), производить оценку транспортного спроса на основе ежедневной матрицы корреспонденций.

На базе ДТМ создана интерактивная карта дорожного движения Москвы, на которой в реальном времени отображается информация о загруженности дорог в баллах, о количестве ДТП, транспортных средств на данный момент и за сутки, наземного городского пассажирского транспорта, числе зафиксированных камерами нарушений ПДД.

В 2015 году специалистами ЦОДД на базе динамической модели была создана система виртуальной и дополненной реальности, имитирующая полет над городом и предоставляющая данные о дорожно-транспортной ситуации в режиме онлайн. Благодаря этой системе уже сейчас можно увидеть образовавшийся затор, подключившись к камере, которая показывает реальное трехмерное изображение этого участка, что позволяет лучше разобраться в ситуации.

Для граждан на этой карте представлена различная информация (текстовая, фото- и видео-) о значимых исторических, культурных и социальных объектах, по сути дополненная реальность.

Данные, полученные из ДТМ, в реальном времени транслирует ряд радиостанций, мессенджер Telegram, дорожные табло. На телеканале «Москва 24» и его интернет-портале m24.ru демонстрируется карта текущей обстановки на дорогах города.

Такое информирование — тоже средство управления транспортными потоками. Москвичи видят, какая обстановка на интересующих их улицах, выбирают пути объезда, рассматривают возможность передвижения на других видах транспорта, например пересаживаются с личного на общественный.

BIG DATA 2017: Цифровые дороги Москвы

Вот оно — Будущее… Но работать безусловно еще много.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Ключевые слова: , , , , .

Отправить ответ

Оставьте первый комментарий!

Сообщить о
avatar
wpDiscuz